
AB.W 1 

Crop evapotranspiration - Guidelines for computing crop water 

requirements - FAO Irrigation and drainage paper 56 

 

 

 

 

 

 

 

 

 

 

 

By  

Richard G. Allen 
Utah State University 
Logan, Utah, USA  

Luis S. Pereira 
Instituto Superior de Agronomia 
Lisbon, Portugal  

Dirk Raes 
Katholieke Universiteit Leuven 
Leuven, Belgium  

Martin Smith 
Water Resources, Development and Management Service 
FAO  

FAO - Food and Agriculture Organization of the United Nations 

Rome, 1998  

The designations employed and the presentation of material in this publication do not imply the expression of 

any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning 

the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its 

frontiers or boundaries. 

 

© FAO 1998  



AB.W 2 

Evapotranspiration (ET) 

The combination of two separate processes whereby water is lost on the one hand from the soil surface by 

evaporation and on the other hand from the crop by transpiration is referred to as evapotranspiration (ET).  

Evaporation 

Evaporation is the process whereby liquid water is converted to water vapour (vaporization) and removed from 

the evaporating surface (vapour removal). Water evaporates from a variety of surfaces, such as lakes, rivers, 

pavements, soils and wet vegetation.  

Transpiration 

Transpiration consists of the vaporization of liquid water contained in plant tissues and the vapour removal to 

the atmosphere. Crops predominately lose their water through stomata. These are small openings on the plant 

leaf through which gases and water vapour pass 

Evapotranspiration (ET) 

Evaporation and transpiration occur simultaneously and there is no easy way of distinguishing between the two 

processes. Apart from the water availability in the topsoil, the evaporation from a cropped soil is mainly 

determined by the fraction of the solar radiation reaching the soil surface. This fraction decreases over the 

growing period as the crop develops and the crop canopy shades more and more of the ground area. When the 

crop is small, water is predominately lost by soil evaporation, but once the crop is well developed and 

completely covers the soil, transpiration becomes the main process 

Factors affecting evapotranspiration 

Weather parameters, crop characteristics, management and environmental aspects are factors affecting 

evaporation and transpiration. The related ET concepts presented in Figure 3 are discussed in the section on 

evapotranspiration concepts. 

Weather parameters 

The principal weather parameters affecting evapotranspiration are radiation, air temperature, humidity and wind 

speed. The evaporation power of the atmosphere is expressed by the reference crop evapotranspiration (ETo). 

The reference crop evapotranspiration represents the evapotranspiration from a standardized vegetated 

surface.  

Crop factors 

The crop type, variety and development stage should be considered when assessing the evapotranspiration 

from crops grown in large, well-managed fields. Differences in resistance to transpiration, crop height, crop 

roughness, reflection, ground cover and crop rooting characteristics result in different ET levels in different 

types of crops under identical environmental conditions.  

Management and environmental conditions 

Factors such as soil salinity, poor land fertility, limited application of fertilizers, the presence of hard or 

impenetrable soil horizons, the absence of control of diseases and pests and poor soil management may limit 

the crop development and reduce the evapotranspiration. Other factors to be considered when assessing ET 

are ground cover, plant density and the soil water content. The effect of soil water content on ET is conditioned 

primarily by the magnitude of the water deficit and the type of soil. On the other hand, too much water will result 

in waterlogging which might damage the root and limit root water uptake by inhibiting respiration.  
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Reference crop evapotranspiration (ETo) 

The evapotranspiration rate from a reference surface, not short of water, is called the reference crop 

evapotranspiration or reference evapotranspiration and is denoted as ETo. The reference surface is a 

hypothetical grass reference crop with specific characteristics. The use of other denominations such as 

potential ET is strongly discouraged due to ambiguities in their definitions.  

The only factors affecting ETo are climatic parameters. Consequently, ETo is a climatic parameter and can be 

computed from weather data. ETo expresses the evaporating power of the atmosphere at a specific location 

and time of the year and does not consider the crop characteristics and soil factors. 

Crop evapotranspiration under standard conditions (ETc) 

The crop evapotranspiration under standard conditions, denoted as ETc, is the evapotranspiration from disease-free, well-

fertilized crops, grown in large fields, under optimum soil water conditions, and achieving full production under the given 

climatic conditions.  

�ETc will be between 1 to 9 mm/day from cool to warm average temperature. 

The amount of water required to compensate the evapotranspiration loss from the cropped field is defined as 

crop water requirement. Although the values for crop evapotranspiration and crop water requirement are 

identical, crop water requirement refers to the amount of water that needs to be supplied, while crop 

evapotranspiration refers to the amount of water that is lost through evapotranspiration. The irrigation water 

requirement basically represents the difference between the crop water requirement and effective precipitation. 

The irrigation water requirement also includes additional water for leaching of salts and to compensate for non-

uniformity of water application. 

Energy balance  

The energy arriving at the surface must equal the energy leaving the surface for the same time 

period.  

All fluxes of energy should be considered when deriving an energy balance equation. The equation for an 

evaporating surface can be written as:  

Rn - G - λ ET - H = 0 (1) 

where Rn is the net radiation, H the sensible heat, G the soil heat flux and λ ET the latent heat flux. 

 

The latent heat flux (λ ET) representing the evapotranspiration fraction can be derived from the energy balance 

equation if all other components are known. Net radiation (Rn) and soil heat fluxes (G) can be measured or 

estimated from climatic parameters. Measurements of the sensible heat (H) are however complex and cannot 

be easily obtained. H requires accurate measurement of temperature gradients above the surface.  

Penman-Monteith equation 

The Penman-Monteith form of the combination equation is:  

(3) 

 

where Rn is the net radiation, G is the soil heat flux, (es - ea) represents the vapour pressure deficit of the air, ρ a 

is the mean air density at constant pressure, cp is the specific heat of the air, ∆ represents the slope of the 
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saturation vapour pressure temperature relationship, γ is the psychrometric constant, and rs and ra are the 

(bulk) surface and aerodynamic resistances.  

 

Aerodynamic resistance (ra) 

The transfer of heat and water vapour from the evaporating surface into the air above the canopy is determined 

by the aerodynamic resistance:  

(4) 

where  

ra aerodynamic resistance [s m
-1
], 

zm height of wind measurements [m], 

zh height of humidity measurements [m], 

d zero plane displacement height [m], 

zom roughness length governing momentum transfer [m], 

zoh roughness length governing transfer of heat and vapour [m], 

k von Karman's constant, 0.41 [-], 

uz wind speed at height z [m s
-1
]. 

 

(Bulk) surface resistance (rs) 

The 'bulk' surface resistance describes the resistance of vapour flow through the transpiring crop and 

evaporating soil surface. Where the vegetation does not completely cover the soil, the resistance factor should 

indeed include the effects of the evaporation from the soil surface. If the crop is not transpiring at a potential 

rate, the resistance depends also on the water status of the vegetation 

(5) 

where  

rs (bulk) surface resistance [s m
-1
], 

rl bulk stomatal resistance of the well-illuminated leaf [s m
-1
], 

LAIactive active (sunlit) leaf area index [m
2
 (leaf area) m

-2
 (soil surface)]. 

The LAI values for various crops differ widely but values of 3-5 are common for many mature crops. For a given 

crop, green LAI changes throughout the season and normally reaches its maximum before or at flowering 

(Figure 8). LAI further depends on the plant density and the crop variety.  

A general equation for LAIactive is:  

LAIactive = 0.5 LAI  

which takes into consideration the fact that generally only the upper half of dense clipped grass is actively 

contributing to the surface heat and vapour transfer. For clipped grass a general equation for LAI is:  

 

 

 

 

h crop height  d = 2/3 h, zom = 0.123 h   

zoh = 0.1 zom 
Assuming a constant crop height of 0.12 m and a 
standardized height for wind speed, temperature 
and humidity at 2 m (zm = zh = 2 m), the 
aerodynamic resistance ra [s m

-1
] for the grass 

reference surface becomes (Eq. 4):  
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LAI = 24 h  

where h is the crop height [m].  

The stomatal resistance, rl, of a single leaf has a value of about 100 s m
-1 under well-watered conditions. By 

assuming a crop height of 0.12 m, the surface resistance, rs [s m
-1], for the grass reference surface becomes 

(Eq. 5):  

 

 

Reference surface 

To obviate the need to define unique evaporation parameters for each crop and stage of growth, the concept of 

a reference surface was introduced. Evapotranspiration rates of the various crops are related to the 

evapotranspiration rate from the reference surface (ETo) by means of crop coefficients 

The FAO Expert Consultation on Revision of FAO Methodologies for Crop Water Requirements accepted the 

following unambiguous definition for the reference surface:  

"A hypothetical reference crop with an assumed crop height of 0.12 m, a fixed surface resistance of 70 

s m
-1

 and an albedo of 0.23." 

The reference surface closely resembles an extensive surface of green grass of uniform height, actively 

growing, completely shading the ground and with adequate water. The requirements that the grass surface 

should be extensive and uniform result from the assumption that all fluxes are one-dimensional upwards. 

FAO Penman-Monteith equation 

From the original Penman-Monteith equation (Equation 3) and the equations of the aerodynamic (Equation 4) 

and surface resistance (Equation 5), the FAO Penman-Monteith method to estimate ETo can be derived (Box 

6):  

(6) 

where  

ETo reference evapotranspiration [mm day
-1
], 

Rn net radiation at the crop surface [MJ m
-2
 day

-1
], 

G soil heat flux density [MJ m
-2
 day

-1
], 

T mean daily air temperature at 2 m height [°C], 

u2 wind speed at 2 m height [m s
-1
], 

es saturation vapour pressure [kPa], 

ea actual vapour pressure [kPa], 

es - ea saturation vapour pressure deficit [kPa], 

∆ slope vapour pressure curve [kPa °C-1
], 

γ psychrometric constant [kPa °C
-1
]. 

The equation uses standard climatological records of solar radiation (sunshine), air temperature, humidity and 

wind speed. To ensure the integrity of computations, the weather measurements should be made at 2 m (or 

converted to that height) above an extensive surface of green grass, shading the ground and not short of water.  
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Atmospheric pressure (P) 

(7) 

where  

P atmospheric pressure [kPa], 

z elevation above sea level [m], 

Psychrometric constant (γγγγ) 

The psychrometric constant, γ, is given by:  

(8) 

where  

γ psychrometric constant [kPa °C
-1
], 

P atmospheric pressure [kPa], 

λ latent heat of vaporization, 2.45 [MJ kg
-1
], 

cp specific heat at constant pressure, 1.013 10
-3
 [MJ kg

-1
 °C

-1
], 

ε ratio molecular weight of water vapour/dry air = 0.622. 

Air temperature 

For standardization, Tmean for 24-hour periods is defined as the mean of the daily maximum (Tmax) and minimum 

temperatures (Tmin) rather than as the average of hourly temperature measurements. 

(9) It is dimensionless and is commonly given as a percentage. 

K = °C + 273.16 

 

Relative humidity  

The relative humidity (RH) expresses the degree of saturation of the air as a ratio of the actual (ea) to the 

saturation (e°(T)) vapour pressure at the same temperature (T):  

(10) 

 

Mean saturation vapour pressure (es)  

As saturation vapour pressure is related to air temperature, it can be calculated from the air temperature. The 

relationship is expressed by:  

(11) 

where  

e°(T) saturation vapour pressure at the air temperature T [kPa], 

T air temperature [°C], 

exp[..] 2.7183 (base of natural logarithm) raised to the power [..]. 

(12) 
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Actual vapour pressure (ea) derived from dewpoint temperature  

 

(14)  

 

Actual vapour pressure (ea) derived from psychrometric data  

The relationship is expressed by the following equation:  

ea = e° (Twet) - γ psy (Tdry - Twet) (15) 

where  

ea actual vapour pressure [kPa], 

 

 

e°(Twet) saturation vapour pressure at wet bulb temperature [kPa], 

γ psy psychrometric constant of the instrument [kPa °C
-1
], 

Tdry-Twet wet bulb depression, with Tdry the dry bulb and Twet the wet bulb temperature [°C]. 

Actual vapour pressure (ea) derived from relative humidity data  

•••• For RHmax and RHmin:  

(17) 

where  

ea actual vapour pressure [kPa], 

e°(Tmin) saturation vapour pressure at daily minimum temperature [kPa], 

e°(Tmax) saturation vapour pressure at daily maximum temperature [kPa], 

RHmax maximum relative humidity [%], 

RHmin minimum relative humidity [%]. 

For RHmax:  

When using equipment where errors in estimating RHmin can be large, or when RH data integrity are in doubt, 

then one should use only RHmax:  

(18) 

•••• For RHmean:  

In the absence of RHmax and RHmin, another equation can be used to estimate ea:  

(19) 

where RHmean is the mean relative humidity, defined as the average between RHmax and RHmin.  

Vapour pressure deficit (es - ea)  

The vapour pressure deficit is the difference between the saturation (es) and actual vapour pressure (ea) for a 

given time period. For time periods such as a week, ten days or a month es is computed from Equation 12 using 

the Tmax and Tmin averaged over the time period and similarly the ea is computed with one of the equations 4 to 

19, using average measurements over the period. 

dewpoint temperature (Tdew) [°C], 

0.000662 for ventilated (Asmann type) psychrometers, with an 
air movement of some 5 m/s, 

0.000800 for natural ventilated psychrometers (about 1 m/s), 

apsy 
= 

0.001200 for non-ventilated psychrometers installed indoors. 
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Slope of saturation vapour pressure curve (∆∆∆∆ )  

For the calculation of evapotranspiration, the slope of the relationship between saturation vapour pressure and 

temperature, ∆, is required. The slope of the curve (Figure 11) at a given temperature is given by.  

(13) 

where  

∆ slope of saturation vapour pressure curve at air temperature T [kPa °C
-1
], 

T air temperature [°C], 

exp[..] 2.7183 (base of natural logarithm) raised to the power [..]. 

Values of slope ∆ for different air temperatures are given in Annex 2 (Table 2.4). In the FAO Penman-Monteith 

equation, where ∆ occurs in the numerator and denominator, the slope of the vapour pressure curve is 

calculated using mean air temperature. 

 

Extraterrestrial radiation (Ra)  

The radiation striking a surface perpendicular to the sun's rays at the top of the earth's atmosphere, called the 

solar constant, is about 0.082 MJ m
-2
 min

-1
. The local intensity of radiation is, however, determined by the angle 

between the direction of the sun's rays and the normal to the surface of the atmosphere. This angle will change 

during the day and will be different at different latitudes and in different seasons. The solar radiation received at 

the top of the earth's atmosphere on a horizontal surface is called the extraterrestrial (solar) radiation, Ra.  

FIGURE 13. Annual variation in extraterrestrial radiation (Ra) at the equator, 20 and 40° north and south 
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The extraterrestrial radiation, Ra, for each day of the year and for different latitudes can be estimated from the 

solar constant, the solar declination and the time of the year by:  

(21) 

where  

Ra extraterrestrial radiation [MJ m
-2
 day

-1
],                      Gsc solar constant = 0.0820 MJ m

-2
 min

-1
, 

dr inverse relative distance Earth-Sun (Equation 23),    ω s sunset hour angle (Equation 25 or 26) [rad], 

ϕ latitude [rad] (Equation 22),                                         δ solar decimation (Equation 24) [rad]. 

The inverse relative distance Earth-Sun, dr, and the solar declination, δ, are given by:  

(23)  

(24)  

where J is the number of the day in the year between 1 (1 January) and 365 or 366 (31 December).  

The sunset hour angle, ω s, is given by:  

ω s = arccos [-tan (ϕ) tan (δ)] (25) 

Extraterrestrial radiation for hourly or shorter periods (Ra)  

For hourly or shorter periods the solar time angle at the beginning and end of the period should be considered 

when calculating Ra:  

(28) 

where  

Ra extraterrestrial radiation in the hour (or shorter) period [MJ m
-2
 hour

-1
], 

Gsc solar constant = 0.0820 MJ m
-2
 min

-1
, 

dr inverse relative distance Earth-Sun (Equation 23), 

δ solar declination [rad] (Equation 24), 

ϕ latitude [rad] (Equation 22), 

ω 1 solar time angle at beginning of period [rad] (Equation 29), 

ω 2 solar time angle at end of period [rad] (Equation 30). 

The solar time angles at the beginning and end of the period are given by:  

(29)  

(30)  

where  

ω solar time angle at midpoint of hourly or shorter period [rad], 

t1 length of the calculation period [hour]: i.e., 1 for hourly period or 0.5 for a 30-minute period. 

The solar time angle at midpoint of the period is:  

(31) 
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where  

t standard clock time at the midpoint of the period [hour]. For example for a period between 14.00 and 15.00 

hours, t = 14.5,  

Lz longitude of the centre of the local time zone [degrees west of Greenwich]. For example, Lz = 75, 90, 105 and 

120° for the Eastern, Central, Rocky Mountain and Pacific time zones (United States) and Lz = 0° for 

Greenwich, 330° for Cairo (Egypt), and 255° for Bangkok (Thailand),  

Lm longitude of the measurement site [degrees west of Greenwich],  

Sc seasonal correction for solar time [hour]. 

Of course, ω < -ω s or ω > ω s from Equation 31 indicates that the sun is below the horizon so that, by definition, 

Ra is zero.  

The seasonal correction for solar time is:  

Sc = 0.1645 sin(2 b) - 0.1255 cos(b) - 0.025 sin(b) (32)  

(33)  

where J is the number of the day in the year.  

 

Daylight hours (N)  

The daylight hours, N, are given by:  

(34) 

where ω s is the sunset hour angle in radians given by Equation 25 or 26. Mean values for N 

 

Solar radiation (Rs)  

If the solar radiation, Rs, is not measured, it can be calculated with the Angstrom formula which relates solar 

radiation to extraterrestrial radiation and relative sunshine duration:  

(35) 

where  

Rs solar or shortwave radiation [MJ m
-2
 day

-1
],  

n actual duration of sunshine [hour],  

N maximum possible duration of sunshine or daylight hours [hour],  

n/N relative sunshine duration [-],  

Ra extraterrestrial radiation [MJ m
-2
 day

-1
],  

as regression constant, expressing the fraction of extraterrestrial radiation reaching the earth on overcast days 

(n = 0),  

as+bs fraction of extraterrestrial radiation reaching the earth on clear days (n = N). 

Rs is expressed in the above equation in MJ m
-2
 day

-1
. The corresponding equivalent evaporation in mm day

-1
 is 

obtained by multiplying Rs by 0.408 (Equation 20). Depending on atmospheric conditions (humidity, dust) and 

solar declination (latitude and month), the Angstrom values as and bs will vary. Where no actual solar radiation 

data are available and no calibration has been carried out for improved as and bs parameters, the values as = 

0.25 and bs = 0.50 are recommended.  
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Clear-sky solar radiation (Rso)  

 

The calculation of the clear-sky radiation, Rso, when n = N, is required for computing net longwave radiation.  

•••• For near sea level or when calibrated values for as and bs are available:  

Rso = (as+bs)Ra (36) 

where  

Rso clear-sky solar radiation [MJ m
-2
 day

-1
], 

as+bs fraction of extraterrestrial radiation reaching the earth on clear-sky days (n = N). 

 

Net solar or net shortwave radiation (Rns)  

The net shortwave radiation resulting from the balance between incoming and reflected solar radiation is given 

by:  

Rns = (1-α)Rs (38) 

where  

Rns net solar or shortwave radiation [MJ m
-2
 day

-1
],  

α albedo or canopy reflection coefficient, which is 0.23 for the hypothetical grass reference crop 

[dimensionless],  

Rs the incoming solar radiation [MJ m
-2
 day

-1
].  

Rns is expressed in the above equation in MJ m
-2
 day

-1
. 

 

Net longwave radiation (Rnl)  

 

The rate of longwave energy emission is proportional to the absolute temperature of the surface raised to the 

fourth power. This relation is expressed quantitatively by the Stefan-Boltzmann law. The net energy flux leaving 

the earth's surface is, however, less than that emitted and given by the Stefan-Boltzmann law due to the 

absorption and downward radiation from the sky. Water vapour, clouds, carbon dioxide and dust are absorbers 

and emitters of longwave radiation. Their concentrations should be known when assessing the net outgoing 

flux. As humidity and cloudiness play an important role, the Stefan-Boltzmann law is corrected by these two 

factors when estimating - the net outgoing flux of longwave radiation. It is thereby assumed that the 

concentrations of the other absorbers are constant:  

(39) 

where  

Rnl net outgoing longwave radiation [MJ m
-2
 day

-1
], 

σ Stefan-Boltzmann constant [4.903 10
-9
 MJ K

-4
 m

-2
 day

-1
], 

Tmax, K maximum absolute temperature during the 24-hour period [K = °C + 273.16], 

Tmin, K minimum absolute temperature during the 24-hour period [K = °C + 273.16], 

ea actual vapour pressure [kPa], 

Rs/Rso relative shortwave radiation (limited to ≤ 1.0), 

Rs measured or calculated. (Equation 35) solar radiation [MJ m
-2
 day

-1
], 

Rso calculated (Equation 36 or 37) clear-sky radiation [MJ m
-2
 day

-1
]. 
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An average of the maximum air temperature to the fourth power and the minimum air temperature to the fourth 

power is commonly used in the Stefan-Boltzmann equation for 24-hour time steps. The term (0.34-0.14√ ea) 

expresses the correction for air humidity, and will be smaller if the humidity increases. The effect of cloudiness 

is expressed by (1.35 Rs/Rso - 0.35). The term becomes smaller if the cloudiness increases and hence Rs 

decreases. The smaller the correction terms, the smaller the net outgoing flux of longwave radiation. Note that 

the Rs/Rso term in Equation 39 must be limited so that Rs/Rso ≤ 1.0.  

Where measurements of incoming and outgoing short and longwave radiation during bright sunny and overcast 

hours are available, calibration of the coefficients in Equation 39 can be carried out.  

Net radiation (Rn)  

 

The net radiation (Rn) is the difference between the incoming net shortwave radiation (Rns) and the outgoing net 

longwave radiation (Rnl):  

Rn = Rns - Rnl (40) 

 

Soil heat flux (G)  

Complex models are available to describe soil heat flux. Because soil heat flux is small compared to 

Rn, particularly when the surface is covered by vegetation and calculation time steps are 24 hours or 

longer, a simple calculation procedure is presented here for long time steps, based on the idea that 

the soil temperature follows air temperature 

 

•••• For day and ten-day periods:  

As the magnitude of the day or ten-day soil heat flux beneath the grass reference surface is relatively 

small, it may be ignored and thus:  

Gday ≈ 0 (42) 

For hourly or shorter periods:  

For hourly (or shorter) calculations, G beneath a dense cover of grass does not correlate well with air 

temperature. Hourly G can be approximated during daylight periods as:  

Ghr = 0.1 Rn (45) 

and during nighttime periods as:  

Ghr = 0.5 Rn (46) 

Where the soil is warming, the soil heat flux G is positive. The amount of energy required for this 

process is subtracted from Rn when estimating evapotranspiration.  

 

Wind profile relationship 

Wind speeds measured at different heights above the soil surface are different. Surface friction tends 

to slow down wind passing over it. Wind speed is slowest at the surface and increases with height. 

For this reason anemometers are placed at a chosen standard height, i.e., 10 m in meteorology and 

2 or 3 m in agrometeorology. For the calculation of evapotranspiration, wind speed measured at 2 m 

above the surface is required. To adjust wind speed data obtained from instruments placed at 



AB.W 13 

elevations other than the standard height of 2m, a logarithmic wind speed profile may be used for 

measurements above a short grassed surface:  

(47) 

where  

u2 wind speed at 2 m above ground surface [m s-1], 

uz measured wind speed at z m above ground surface [m s-1], 

z height of measurement above ground surface [m]. 

The corresponding multipliers or conversion factors are given in Annex 2 (Table 2.9) and are plotted 

in Figure 16.  

 

FIGURE 16. Conversion factor to convert wind speed measured at a certain height above ground level to wind 

speed at the standard height (2 m) 
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Figures 

FIGURE 11. Saturation vapour pressure shown as a function of temperature: e°(T) curve 

FIGURE 12. Variation of the relative humidity over 24 hours for a constant actual vapour pressure of 2.4 kPa 
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FIGURE 14. Annual variation of the daylight hours (N) at the equator, 20 and 40° north and south 

 

 

TABLE 1. Conversion factors for Evapotranspiration 

depth  volume per unit area energy per unit area *  

 
mm day-1 m3 ha-1 day-1  l s-1 ha-1  MJ m-2 day-1  

1 mm day-1  1  10  0.116  2.45  

1 m3 ha-1 day-1 0.1  1  0.012  0.245  

1 l s-1 ha-1  8.640  86.40  1  21.17  

1 MJ m-2 day-1 0.408  4.082  0.047  1  

* For water with a density of 1000 kg m-3 and at 20°C. 


